NANOCARRIER DRUG DELIVERY SYSTEMS: A REVOLUTIONARY APPROACH IN TARGETED AND CONTROLLED THERAPIES

Shalini Rana¹, Anjali Goyel²

ABSTRACT

Nano nano (NDDS) drug delivery systems uses particles between 10 to 1000 nm and is utilized to increase targeted and controlled release of medications. They permit transportation across biological barriers, such as the blood brain barrier, as they enhance bioavailability and thus drug solubility. This resultant high precision and limited exposure of the system, offers NDDS as a major breakthrough superior to conventional dosage forms. As regards the evolution of nanocarrier, the systems that have been studied most are liposomes, polymers and dendrimers that all use active and passive targeting mechanisms, as well as responsiveness to exogenous signals. Existing uses are in cancer, infectious, and neurological diseases, cardiovascular treatment and also in improving adherence by patients. However, setbacks remain when it comes to biocompatibility, immune recognition, scalable production, as well as regulatory issues, and repeated innovation quests. Preclinical and clinical validation with fine details indicates that NDDS can be a transformational platform that can revamp drug administration and therapeutic effects in a wide range of areas in medicine.

Keywords: NDDS, Nanotechnology, Nanocarriers, Liposomes, Nanomaterials

1. INTRODUCTION

A nano drug delivery system (NDDS) is a designed technological platform that uses nanoparticles, which are usually entities with dimensions between 10 and 1,000 nm, to carry and deliver therapeutic agents, or drugs, in a controlled and targeted manner[1]. These systems are designed to improve the efficacy and safety of therapeutic interventions by:

- Enabling specific delivery of drugs to discrete tissues or cell populations, which can minimize adverse effects and minimize the effect on healthy tissue.[2]
- Delivering controlled or prolonged release kinetics, which allows therapeutic agents to be kept at optimum concentrations with fewer administrations[3]
- Enhancing solubility and bioavailability, particularly of water-insoluble compounds.[4]
- Allowing transport through biological barriers, including the blood brain barrier, which is frequently necessary in the treatment of some disorders. [5]

NDDS utilizes nanomaterials, both organic-based, e.g., liposomes and polymeric nanoparticles, and inorganic[6], e.g., gold or silica nanoparticles, which can encapsulate, adsorb, or surface-bind therapeutic agents and deliver them in a highly efficient manner. The method is actively studied and is being actively used to treat cancer, infectious diseases, neurological diseases, and other diseases in which the accuracy of delivery has a significant impact on patient outcomes.[7]

Brief Background on the Evolution of Drug Delivery Technologies

The technologies of drug delivery have changed significantly over the last few decades, with the development of controlled- and sustained-release systems that are far more advanced than classical tablet and capsule formulations. The following are some of the significant advances: [8]Spansule 12-hour sustained-release capsules allowed slow release of drug over 12 hours, and thus the basis of controlled release was established.[8]

Late 1980s1990s: Long-acting injectables and implantables (including Lupron Depot 1990s) extended peptide and protein delivery.[10] PEGylation was used to increase the stability and biological half-life of drugs; new nanotechnologies, such as Doxil(r) (PEGylated liposomal doxorubicin) used nanocarriers to achieve specific targeting Faster nanomedicine research, inspired by the United States National Nanotechnology Initiative, resulted in the creation of nanoparticles that maximised drug solubility, circumvented physiological barriers, and, eventually, enabled mRNA vaccine lipid nanoparticle delivery[10]. Together, the development of release mechanisms, carrier agents (liposomes, dendrimers, polymeric nanoparticles) and personalised strategies have become the modern-day drug delivery[11]

Rationale for Using Nanotechnology in Drug Delivery.

Nanotechnology addresses major drug delivery challenges through:

- Over the past few years, there has been a significant improvement in therapeutic efficacy using nanoscale drug delivery systems (NDDS)[12]. The discussion below highlights important advances in the three major areas of design, namely, particle size control, surface modification, and drug release, in terms of their impact on therapeutic effects. The present practice and the aspects of its improvement are discussed, along with the possibilities of personalizing the delivery features.[13]
- Control of particle size distribution is critical to the optimisation of NDDS performance. Contemporary synthesis techniques like microfluidics, salting-out precipitation, and emulsions allow the control of dimensions.[14] The most common method of surface functionalisation is covalent or non-covalent attachment of small molecules, polyethylene glycol, biocompatible polymers, or peptides to achieve an optimal balance between stealth and bioactivity or targeting .[15]
- The release of drugs can be customized to provide either a long-term controlled release or a fast ondemand releas. Such temporal characteristics can be converted into less frequent dosing and better patient compliance. Several mechanistic strategies are used, such as responsive polymers, encapsulation in hollow nanostructures, and destabilisation-based strategies.[16]
- Another important capability of NDDS is the capacity

- to deliver hydrophilic and hydrophobic agents along various routes of administration. This flexibility is based on the wide chemical range of the nanocarrier materials, such as liposomes, dendrimers, and polymeric nanoparticles, and their combinations.[17]
- Clinical advantages are enormous Targeting is more precise, and reduced systemic side effects lead to better safety profiles. The increased compliance, as a result of reduced or smaller doses, further entrenches patient acceptance. Enhanced transgression of biological barriers, including the blood-brain barrier, is an opportunity to explore central nervous system indications.[18]
- Despite these breakthroughs, there are still enormous challenges. Biocompatibility, robustness of manufacturing, and regulatory aspects are still under investigation.[19] The current research is exploring the pathways of immunogenicity, biodistribution, and metabolic fate, and gaps in knowledge that need to be filled.[20]
- Future trends are the increasing popularity of smart NDDS, i.e. nanostructures that contain stimuli-responsive elements and functionalities that are targeted, and the growing pace of commercialised analogues.[21]
- In conclusion, NDDS provide attractive responses to pharmacokinetic challenges that have long existed and their strategic value in the practice of personalised and precision medicine is well established.[22]

2. CLASSIFICATION AND TYPES OF NANO DRUG DELIVERY SYSTEMS Nano drug delivery systems can be classified based on nanocarrier nature into:

Classification	Types / Examples	Description & Features	Reference
Organic	Liposomes, polymeric	Made of lipids or polymers; generally	[23]
Nanocarriers	nanoparticles, dendrimers,	biodegradable and biocompatible.	
	micelles, solid lipid nanoparticles	Encapsulate hydrophilic and hydrophobic	
	(SLNs), polymeric micelles	drugs.	
Inorganic	Gold nanoparticles, silver	Made from metals or metal oxides; used in	[24]
Nanocarriers	nanoparticles, magnetic	imaging, therapy; may suffer from toxicity or	
	nanoparticles, silica nanoparticles,	clearance issues.	
Composite	Combination of organic and	Combine advantages of both; multifunctional	[25]
(Hybrid)	inorganic components	including stimuli responsiveness, targeted	
Nanocarriers		delivery, diagnostics.	

Additional types highlighted in the literature include specialized nanocarriers such as nanogels—hydrophilic polymer networks capable of loading bioactive molecules—and solid lipid nanoparticles (SLNs), which consist of solid lipid matrices encapsulating drugs for enhanced stability and targeted delivery'.

3. MECHANISMS OF DRUG DELIVERY IN NDDS

3.1 Passive Targeting: Enhanced Permeability and Retention (EPR) Effect

The passive targeting of nanoparticles to tumor or inflamed tissues occurs due to leaky vasculature and inefficient lymphatic drainage and directs drugs to the pathology location and reduces systemic exposure.

3.2 Active Targeting

The functionalization of nanoparticle surfaces with ligands, including antibodies, peptides, aptamers, or small molecules, enables the selective binding to receptors that are overexpressed on the target cells, and thereby, increases endocytic uptake and target specificity.

3.3 Controlled and Sustained Release

Controlled drug release can be performed by diffusion, carrier degradation or stimuli-responsive mechanisms (induced by internal factors such as pH, enzymes, redox conditions or external stimuli such as temperature, light, magnetic fields).

3.4 Stimuli-Responsive Delivery

The more sophisticated NDDS systems can deliver therapeutic agents to pathological sites in response to a certain physiological signal or externally applied stimuli-such as the acidic tumor microenvironment or localized hyperthermia-thus narrowing therapeutic windows.

3.5 Crossing Biological Barriers

The intracranial delivery of neurotherapeutics that are inaccessible to conventional pharmacological agents is possible through nanoparticles that have been designed to overcome complex barriers, including the bloodbrain barrier.

3.6 Cellular Uptake and Intracellular Trafficking

Endocytosis mechanisms of cellular uptake directs drugs to intracellular structures, enhancing their effect

and avoiding the degradation of labile therapeutics.

3.7 Encapsulation and Surface Attachment

Encapsulation: Drugs are enclosed inside nanocarriers to shield from degradation and control release.

4. DESIGN AND PREPARATION METHODS

4.1 Synthesis Strategies

Top-Down: Breaking bulk materials into nanoparticles (milling, grinding); primarily for inorganic carriers.

Bottom-Up: Self-assembly and molecular synthesis approaches provide precise control over nanoparticle size and morphology; includes emulsion methods, thin-film hydration, microfluidics, green synthesis.

4.2 Drug Loading and Encapsulation

- Physical entrapment within carrier cores.
- Chemical conjugation with biodegradable or stimulicleavable linkers.
- Surface adsorption via electrostatic/hydrophobic interactions.
- Self-assembled drug nanoparticles without carriers.

4.3 Surface Modification and Functionalization

- PEGylation improves stability and circulation time.
- Attachment of targeting ligands enhances cell specificity.
- Tailoring surface charge improves cellular uptake and reduces immune clearance.
- Incorporation of stimuli-responsive moieties for triggered release.

4.4 Characterization Techniques

- Size and Distribution: Dynamic light scattering (DLS), electron microscopy.
- Surface Charge: Zeta potential analysis.
- Morphology: TEM, SEM, AFM.
- Drug Loading Efficiency: UV-Vis, HPLC.

5. APPLICATIONS IN MEDICINE

5.1 Cancer Therapy

NDDS enable targeted chemotherapy by using nanoparticles such as liposomes, polymeric nanoparticles, and dendrimers that deliver drugs selectively to tumor cells. This improves drug solubility and stability, enhances drug accumulation at tumor sites via passive targeting mechanisms like the Enhanced

Permeability and Retention (EPR) effect, and reduces systemic toxicity. Functionalization of nanoparticles with targeting ligands further improves specificity to cancer cells.

A critical challenge in cancer treatment—multidrug resistance (MDR)—can be addressed by NDDS, which can inhibit drug efflux pumps and overcome other resistance mechanisms intrinsic to tumor cells. NDDS also facilitate co-delivery of multiple drugs or gene therapy agents (such as siRNA) to amplify therapeutic effects and reverse resistance.

Moreover, novel modalities supported by NDDS include magnetically guided delivery and photothermal therapy, which enhance treatment precision and efficacy. Clinical evidence shows that nanoparticle formulations like PEGylated liposomal doxorubicin reduce side effects like cardiotoxicity compared to free drugs, while nanoparticle albumin-bound paclitaxel improves tolerability.

Research expands NDDS roles beyond chemotherapy to include immunotherapy, leveraging nanoparticles to modify the tumor immune microenvironment and improve cancer immunotherapeutic responses.

5.2 Infectious Diseases

In infectious disease treatment, NDDS improve antibacterial and antiviral therapies by enhancing the stability and bioavailability of antimicrobial agents. Nanoparticles facilitate targeted delivery to infection sites, which prolongs therapeutic drug levels and reduces systemic exposure, minimizing side effects.

Targeted delivery to infected tissues can help overcome issues such as drug resistance and poor drug penetration. By protecting drugs from degradation and facilitating controlled release, NDDS increase treatment efficacy while lowering dosing frequency.

Overall, NDDS provide a promising platform to improve drug delivery precision, reduce toxicity, and combat resistance mechanisms in both cancer and infectious disease therapies.

These detailed advantages demonstrate the transformative potential of NDDS to improve treatment outcomes in these critical medical areas.

5.3 Central Nervous System Disorders

By crossing the blood-brain barrier, NDDS provide new avenues to treat neurological diseases such as Alzheimer's, Parkinson's, brain tumors, and multiple sclerosis, enhancing drug delivery, stability, and controlled release within the CNS.

5.4 Cardiovascular Therapeutics

Nanocarriers support enhanced solubility, targeted delivery, and controlled release of cardiovascular drugs for conditions like atherosclerosis and myocardial infarction, potentially improving efficacy while minimizing systemic side effects.

5.5 Delivery of Natural Products

NDDS expand the therapeutic application of natural compounds by improving their solubility, stability, and bioavailability, enabling sustained release and targeted delivery.

6. ADVANTAGES OF NANO-BASED DRUG DELIVERY SYSTEMS

The advantages of Nano-based Drug Delivery Systems (NDDS) can be summarized as follows:

- Improved Targeting and Reduced Side Effects: NDDS can deliver drugs specifically to diseased cells or tissues (e.g., cancer cells), minimizing damage to healthy cells and lowering systemic toxicity, thereby increasing therapeutic efficacy.
- Enhanced Drug Solubility and Bioavailability: Nanocarriers improve the solubility and stability of poorly water-soluble drugs, enhancing absorption and bioavailability for more effective treatment.
- Controlled and Sustained Drug Release: NDDS enable precise control over drug release rates, sustaining therapeutic levels for longer periods, which reduces dosing frequency and improves patient compliance.
- Ability to Cross Biological Barriers: Nanoparticles can traverse challenging biological barriers such as the blood-brain barrier, enabling treatment of diseases previously difficult to address, like neurological disorders—.
- Versatility in Payload and Administration Routes:
 NDDS accommodate both hydrophilic and

hydrophobic drugs, and can be administered via various routes including oral, inhalation, and injection.

- Improved Stability and Circulation: Surface modifications like PEGylation prolong nanoparticle circulation time, preventing rapid clearance and improving drug delivery efficiency.
- Multifunctionality: NDDS can combine therapeutic and diagnostic capabilities (theranostics), and stimuli-responsive systems allow drug release triggered by environmental factors such as pH or temperature for better therapeutic control.
- Potential for Personalized Medicine: The tunable design of nanoparticles offers opportunities for patient-specific therapies biocompatibility, immune clearance, manufacturing scalability, and regulatory approvals remain for widespread clinical adoption.

7. CHALLENGES AND LIMITATIONS

- Biocompatibility and Long-term Toxicity: Safety profiles for various nanomaterials require thorough evaluation.
- Immune Clearance and Immunogenicity: Rapid clearance by the reticuloendothelial system can limit efficacy.
- Manufacturing Scalability: Challenges exist in reproducibility and cost-effective large-scale production.
- Regulatory Hurdles: Lack of standardized guidelines delays clinical translation.
- Stability and Storage: Nanocarriers must maintain stability in storage and physiological conditions.
- Complex Biological Interactions: Protein corona formation and cellular uptake mechanisms need deeper understanding.
- Personalization: Tailoring NDDS to individual patient needs remains complex and underdeveloped.

8. CONCLUSION

Nano drug delivery systems represent a significant advancement in therapeutics by utilizing nanoscale properties to enhance drug targeting, improve bioavailability, and enable controlled release. These systems effectively overcome traditional challenges in

medicine such as poor solubility, non-specific distribution, and biological barriers. NDDS have demonstrated considerable benefits in treating various conditions including cancer, infectious diseases, neurological disorders, cardiovascular diseases, and in delivering natural products. Clinical implementations such as liposomal chemotherapeutics and lipid nanoparticle vaccines highlight their therapeutic impact. However, challenges related to safety, biocompatibility, scalable manufacturing, regulatory approval, and personalization remain critical considerations impacting their widespread clinical use.Looking ahead, future developments in NDDS are expected to focus on creating smart, stimuli-responsive nanocarriers that allow precise, on-demand drug release. Advances in personalized nanomedicine will enable tailoring therapies to individual patient profiles for optimized efficacy and safety. Integration of therapeutic and diagnostic functions into multifunctional theranostic platforms will facilitate real-time monitoring and adaptive treatment strategies. Moreover, scalable and eco-friendly manufacturing techniques alongside clear regulatory frameworks will be pivotal in accelerating clinical translation and broad accessibility. Continued innovation in overcoming biological barriers will further expand the possibilities of treating currently intractable diseases, ultimately transforming patient care globally.

CONFLLICT OF INTEREST

None

FUNDING

None

REFERENCES

- 1. Liu, J., et al., Application of nano drug delivery system (NDDS) in cancer therapy: A perspective. Recent patents on anti-cancer drug discovery, 2023. 18(2): p. 125-132.
- Mitchell, M.J., et al., Engineering precision nanoparticles for drug delivery. Nature reviews drug discovery, 2021. 20(2): p. 101-124.
- 3. Kesharwani, P., et al., PEGylated PLGA nanoparticles: unlocking advanced strategies for cancer therapy. Molecular Cancer, 2025. 24(1): p. 205.
- Kandagatla, H.P., et al., Highly increasing solubility of clofazimine, an extremely water-insoluble basic drug, in lipidbased SEDDS using digestion products of long-chain lipids.

- Journal of Pharmaceutical Sciences, 2025. 114(6): p. 103782.
- 5. Anwarkhan, S., J. Koilpillai, and D. Narayanasamy, Utilizing multifaceted approaches to target drug delivery in the brain: from nanoparticles to biological therapies. Cureus, 2024. 16(9).
- Bhaskar, P., et al., Navigating the Nanoscale Frontier: An In-Depth Introduction to the World of Nanomedicine, in Nanomedicine: Innovations, Applications, and Breakthroughs in the Quest for Health and Medicine's Future. 2024, Springer. p. 531-559.
- 7. Crommelin, D.J. and A.T. Florence, Towards more effective advanced drug delivery systems. International Journal of Pharmaceutics, 2013. 454(1): p. 496-511.
- 8. Chandra, P., et al., Oral sustained release expandable dosage forms: innovations, challenges, and future directions. Journal of Biomaterials Science, Polymer Edition, 2025: p. 1-30.
- 9. Santhanakrishnan, K.R., et al., PEGylation in pharmaceutical development: current status and emerging trends in macromolecular and immunotherapeutic drugs. Cureus, 2024. 16(8).
- Tao, W., Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. 2025.
- Sengar, A., Multifunctional Drug Delivery Platforms: Bridging Smart Nanocarriers, Bioprinting, and Responsive Systems. 2025.
- 12. Motamedi, M. and M.S. Tabatabaei, Novel Drug Delivery Systems: Approach to the Market. Novel Drug Delivery Systems: Fundamentals and Applications, 2025: p. 35-65.
- 13. Bhatta, M.D.K., et al., ADVANCES IN NANOTECHNOLOGY-DRIVEN DRUG DELIVERY SYSTEMS: CURRENT TRENDS AND FUTURE PROSPECTS.
- 14. Purohit, D., et al., An overview of the recent developments and patents in the field of pharmaceutical nanotechnology. Recent Patents on Nanotechnology, 2021. 15(1): p. 15-34.
- 15. Comanescu, C., Recent advances in surface functionalization of magnetic nanoparticles. Coatings, 2023. 13(10): p. 1772.
- 16. Sankula, M.K.R., et al., Drug Delivery Systems. 2025: JEC PUBLICATION.
- 17. Halder, S. and R. Kumar, In Vitro and in Vivo Applications of Nanoparticles in Head and Neck Cancer. 2025: Deep Science Publishing.
- 18. Iacob, A.-T., et al., A State-of-the-Art Review on Recent Biomedical Application of Polysaccharide-Based Niosomes as Drug Delivery Systems. Polymers, 2025. 17(11): p. 1566.
- 19. Kirubakaran, D., et al., A comprehensive review on the green synthesis of nanoparticles: advancements in biomedical and environmental applications. Biomedical Materials & Devices, 2025: p. 1-26.
- 20. Samal, P., et al., Exploring the Intricacies of Protein-

- Nanoparticle Interaction and its Implications in Chronic Diseases: A Comprehensive Review. Nanoscale Horizons, 2025
- 21. Mahammed, N., Stimuli-responsive nanomaterials: Innovations in on-demand drug release systems. Asian Journal of Pharmaceutics (AJP), 2025. 19(01).
- 22. Nammas, M., The Impact of Drug Delivery Systems on Pharmacokinetics and Drug-Drug Interactions in Neuropsychiatric Treatment. Cureus, 2025. 17(6).
- 23. Mohammed, H.A., et al., Solid lipid nanoparticles for targeted natural and synthetic drugs delivery in high-incidence cancers, and other diseases: Roles of preparation methods, lipid composition, transitional stability, and release profiles in nanocarriers' development. Nanotechnology reviews, 2023. 12(1):p. 20220517.
- 24. Meena, J., et al., Inorganic particles for delivering natural products, in Sustainable Agriculture Reviews 44: Pharmaceutical Technology for Natural Products Delivery Vol. 2 Impact of Nanotechnology. 2020, Springer. p. 205-241.
- 25. Diouf, M., S. Kouyate, and A. Diakhoumpa, Inorganic nanostructures as carriers for doxorubicin in targeted cancer therapy: advances in nanoformulation strategies. Composite Interfaces, 2025: p. 1-32.
- 26. Syed Azhar, S.N.A., et al., Nanostructured lipid carriers-hydrogels system for drug delivery: Nanohybrid technology perspective. Molecules, 2022. 27(1): p. 289.
- 27. Sanità, G., B. Carrese, and A. Lamberti, Nanoparticle surface functionalization: how to improve biocompatibility and cellular internalization. Frontiers in molecular biosciences, 2020.7: p. 587012.
- 28. Raza, A., et al., Endogenous and exogenous stimuli-responsive drug delivery systems for programmed site-specific release. Molecules, 2019. 24(6): p. 1117.
- 29. Akhtar, A., et al., Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. Journal of controlled release, 2021. 330: p. 1152-1167.
- 30. Bernatoniene, J., M. Plieskis, and K. Petrikonis, Pharmaceutical 3D Printing Technology Integrating Nanomaterials and Nanodevices for Precision Neurological Therapies. Pharmaceutics, 2025. 17(3): p. 352.
- 31. Perrigue, P.M., et al., Degradation of drug delivery nanocarriers and payload release: A review of physical methods for tracing nanocarrier biological fate. Pharmaceutics, 2021.13(6): p. 770.
- 32. Kumar, S., et al., Advantages and disadvantages of metal nanoparticles, in Nanoparticles reinforced metal nanocomposites: mechanical performance and durability. 2023, Springer. p. 209-235.
- 33. Borah, R., et al., A review on self?assembly of colloidal nanoparticles into clusters, patterns, and films: emerging

- synthesis techniques and applications. Small Methods, 2023. 7(6): p. 2201536.
- 34. Ahmady, A.R., et al., Alginate carrier as a controlled thymol delivery system: Effect of particle size. Materials Chemistry and Physics, 2023. 294: p. 126982.
- 35. Lee, H., Effect of PEGylation on the Adsorption and Binding Strength of Plasma Proteins to Nanoparticle Surfaces. Molecular Pharmaceutics, 2024. 22(1): p. 520-532.
- 36. Mehrizi, T.Z., M. Mirzaei, and M.S. Ardestani, Pegylation, a successful strategy to address the storage and instability problems of blood products: review 2011-2021. Current Pharmaceutical Biotechnology, 2024. 25(3): p. 247-267.
- 37. Krishnan, N., et al., A modular approach to enhancing cell membrane-coated nanoparticle functionality using genetic engineering. Nature nanotechnology, 2024. 19(3): p. 345-353.
- 38. Li, Y., et al., Specific surface-modified iron oxide nanoparticles trigger complement-dependent innate and adaptive antileukaemia immunity. Nature Communications, 2024. 15(1): p. 10400.
- 39. Sun, Y. and E. Davis, Nanoplatforms for targeted stimuli-responsive drug delivery: a review of platform materials and stimuli-responsive release and targeting mechanisms. Nanomaterials, 2021.11(3): p. 746.
- 40. Jia, Z., et al., Dynamic light scattering: a powerful tool for in situ nanoparticle sizing. Colloids and Interfaces, 2023. 7(1): p. 15.
- 41. Begum, M.Y. and A. Alamri, Introduction to Novel Drug Delivery System (NDDS). 2024: Academic Guru Publishing House.
- 42. Maimaitijiang, A., et al., Progress in research of nanotherapeutics for overcoming multidrug resistance in cancer. International Journal of Molecular Sciences, 2024. 25(18): p. 9973.
- 43. Gao, S., et al., Nano-drug delivery system of natural products for disease prevention and treatment. Expert Opinion on Drug Delivery, 2025: p. 1-11.

- 44. Lin, Z.-Y., Q. Song, and K. Xu, Drug Delivery System for Cancer Immunotherapy: Potential Roles, Challenge and Recent Advances. Technology in Cancer Research & Treatment, 2025. 24: p. 15330338251338390.
- 45. Žigrayová, D., V. Mikušová, and P. Mikuš, Advances in antiviral delivery systems and chitosan-based polymeric and nanoparticulate antivirals and antiviral carriers. Viruses, 2023. 15(3): p. 647.
- 46. Rawal, S.U., B.M. Patel, and M.M. Patel, New drug delivery systems developed for brain targeting. Drugs, 2022. 82(7): p. 749-792.
- 47. Montelione, N., et al., Tissue engineering and targeted drug delivery in cardiovascular disease: the role of polymer nanocarrier for statin therapy. Biomedicines, 2023. 11(3): p. 798.
- 48. Khadam, V.K.R., et al., An updated comprehensive review on novel drug delivery systems (NDDS) in the pharmaceuticals. Asian Journal of Pharmaceutical Research and Development, 2024. 12(1): p. 55-64.
- 49. Bhalani, D.V., et al., Bioavailability enhancement techniques for poorly aqueous soluble drugs and therapeutics. Biomedicines, 2022. 10(9): p. 2055.
- 50. Furtado, D., et al., Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Advanced materials, 2018. 30(46): p. 1801362.
- 51. Pal, R., et al., The comprehensive review: Exploring future potential of nasopulmonary drug delivery systems for nasal route drug administration. Journal of Drug Delivery and Therapeutics, 2024. 14(3): p. 126-136.
- 52. Shi, L., et al., Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale, 2021. 13(24): p. 10748-10764.
- 53. Mazumdar, H., Khondakar, K. R., Das, S., Halder, A., & Kaushik, A. (2025). Artificial intelligence for personalized nanomedicine; from material selection to patient outcomes. Expert Opinion on Drug Delivery, 22(1), 85-108.