INVESTIGATING HOW NEUTROPHILS CONTRIBUTE TO THE BODY'S DEFENCE AGAINST INFECTIONS

Musaib Shameem, Mahesh Gaba, Parveen Bansal

¹Assistant professor, Allied health sciences Desh Bhagat University, Fatehgarh sahib,India ²Assistant Professor, Faculty of Allied HealthCare and Sciences, Desh Bhagat University, Punjab, India ³Director, Director, Faculty of Allied HealthCare and Sciences, Desh Bhagat University, Punjab, India

ABSTRACT

Neutrophils are essential effector cells in the innate immune system, serving as the first line of defense against a variety of microbial invaders. These highly versatile cells are recruited to sites of infection where they execute several protective mechanisms, including phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs). Through these actions, neutrophils effectively capture and neutralize pathogens, preventing the spread of infection. Additionally, neutrophils produce a range of antimicrobial peptides and enzymes that contribute to the destruction of bacteria, fungi, and viruses. Despite their critical role in immune defense, neutrophils must operate within a tightly regulated framework, as excessive activation or an impaired response can lead to detrimental outcomes such as tissue damage, chronic inflammation, and immunopathology. This review delves into the multifaceted functions of neutrophils, focusing on their complex interactions with pathogens and other immune cells. It highlights the importance of their activation, recruitment, and resolution of inflammation in maintaining immune homeostasis. Furthermore, we explore how dysregulated neutrophil responses contribute to the pathogenesis of various infectious and inflammatory diseases, including chronic infections, autoimmune disorders, and sepsis. Understanding the delicate balance of neutrophil function offers valuable insights into novel therapeutic approaches aimed at modulating neutrophil activity to enhance host defense while minimizing tissue damage and inflammation. The potential of targeting neutrophil pathways holds promise for advancing the treatment of infectious diseases and other immune-related conditions

Keywords: Neutrophils, Innate immunity, Host defense, Infection, Phagocytosis, Neutrophil extracellular traps (NETs), Antimicrobial peptides, Immune regulation, Inflammation, Pathogen clearance, Immune homeostasis, Immune dysfunction, Autoimmune disorders, Sepsis, Immunopathology, Chronic inflammation.

INTRODUCTION

Neutrophils, the most abundant and ubiquitous leukocytes in the human circulatory system, are indispensable sentinels in the body's immune defense network, occupying a central and irreplaceable role in the rapid and efficient response to microbial invasions. As frontline defenders of the innate immune system, these versatile and adaptive cells demonstrate remarkable functional plasticity, mobilizing a diverse and sophisticated arsenal of antimicrobial strategies to combat a wide range of pathogens, including bacteria, fungi, and viruses. Through a series of intricate mechanisms such as phagocytosis, the release of antimicrobial peptides, degranulation of potent cytotoxic enzymes, and the formation of neutrophil extracellular traps (NETs), neutrophils engage in the direct neutralization and eradication of invading microorganisms. Beyond their direct pathogen-eliminating capabilities, however, the role of neutrophils extends far deeper into the broader immune landscape. These cells are essential orchestrators of the inflammatory cascade, mediating early immune responses,

influencing the progression of inflammation, and modulating interactions with other immune cell types, such as macrophages and dendritic cells. Neutrophils also contribute significantly to the repair of damaged tissues, helping to restore homeostasis after infection or injury. Despite their fundamental role in host defense, the molecular underpinnings that regulate neutrophil function remain extraordinarily complex. Cellular signaling pathways, intracellular communication networks, and the ability of neutrophils to adapt to various tissue microenvironments are still under intensive investigation. Additionally, while neutrophils are critical to eliminating infections, their dysregulated activation or aberrant responses can lead to unintended pathological consequences, including chronic inflammation, tissue damage, autoimmune diseases, and even the exacerbation of certain infections. In this review, we aim to unravel the multifaceted and dynamic roles of neutrophils in immune defense, exploring their pivotal contributions to both protective immunity and pathological processes, as well as the ongoing research into their regulatory mechanisms. By shedding light on the intricate biology of these essential cells, we seek to better understand their potential as therapeutic targets for a wide array of diseases, offering new insights into how neutrophils contribute to both health and disease.

MATERIALS AND METHODOLOGY

This review compiles a comprehensive analysis of the current literature surrounding the roles of neutrophils in immune defense. A multi-faceted approach was utilized to gather relevant data from peer-reviewed articles, clinical studies, experimental models, and recent reviews on neutrophil biology. The materials and methodologies employed in this review include the following:

Section	Details
Literature Search Approach	A structured search across academic databases like PubMed, Scopus, and Google Scholar using terms such as "neutrophils," "immune response," "pathogen defense," "inflammatory responses," "NETs," and other related phrases.
Inclusion Criteria	Focused on peer-reviewed original research, clinical studies, and comprehensive reviews; centered on the molecular pathways and biological roles of neutrophils in infections, inflammation, autoimmune disorders, and tissue repair.
Data Collection and Integration	Key findings from selected studies were extracted, concentrating on neutrophil activation, cytokine secretion, degranulation, NET formation, phagocytosis, and their interactions with other immune system cells.
Experimental Models	Reviewed animal studies, primarily using murine models, to evaluate neutrophil responses to various pathogens (bacteria, fungi, viruses), inflammatory stimuli, and tissue damage, focusing on neutrophil recruitment and immune cell interactions.
Immunological Techniques	Flow Cytometry: Used for analyzing surface markers, cytokine levels, and phagocytosis. - Immunofluorescence/Immunohistochemistry: For detecting neutrophil presence and NET formation. - Western Blotting: Analyzed protein expression linked to neutrophil functions. - ELISA: Quantification of cytokines and chemokines. - Microscopy: To observe neutrophil migration and interactions with pathogens. - Gene Expression Profiling (RT-PCR, RNA-seq): To examine gene expression patterns in neutrophils under different conditions.
Data Interpretation	Comparative review of neutrophil responses in various infectious and inflammatory models, with an emphasis on signaling pathways, regulation of neutrophil lifespan, and the resolution of inflammation.
Data Interpretation	Identified areas for further investigation: understanding neutrophil diversity in tissues, the long-term effects of persistent neutrophil activation, and their role in chronic inflammation and autoimmune diseases.

DISCUSSION

Neutrophils are vital components of the body's initial defense against pathogens, playing an essential role in both immune surveillance and the resolution of infection. Over recent years, our understanding of their functions has grown significantly, revealing that these cells not only perform direct pathogen elimination but also regulate inflammatory responses, influence tissue repair, and coordinate with other immune cells to ensure a balanced immune reaction. Despite the wealth of knowledge gained, the full scope of neutrophil

contributions in both health and disease remains an active area of investigation.

Activation and Immune Surveillance by Neutrophils

Upon detecting pathogens or damage-associated signals, neutrophils rapidly become activated, undergoing changes such as increased motility, enhanced phagocytic activity, and the release of antimicrobial molecules. These functions are crucial for controlling infections in the early stages. In addition to their direct pathogen-killing functions, neutrophils also contribute to the inflammatory response by

secreting cytokines and chemokines, which recruit other immune cells to the site of infection. However, when activated inappropriately or excessively, neutrophils can cause tissue damage and contribute to the chronic inflammation observed in diseases like rheumatoid arthritis and inflammatory bowel disease (IBD). The delicate balance between neutrophil activation and resolution is critical for maintaining health and preventing autoimmune conditions.

Neutrophil Functions: Phagocytosis and NET Formation

One of the hallmark functions of neutrophils is their ability to engulf and destroy invading microorganisms through phagocytosis. This process is particularly effective against bacteria and fungi and is essential for preventing the spread of infection. Additionally, neutrophils utilize another mechanism—neutrophil extracellular traps (NETs)—to ensnare and neutralize pathogens. NETs are composed of DNA and antimicrobial proteins that form extracellular traps around pathogens, preventing their spread. While NETs are highly effective in pathogen elimination, their uncontrolled release can contribute to disease progression in conditions like sepsis, systemic lupus erythematosus (SLE), and thrombosis. Thus, while NETs are an important antimicrobial tool, their dysregulated production can lead to pathological consequences.

Neutrophils in Chronic Inflammation and Autoimmune Disease

In chronic inflammatory diseases and autoimmune conditions, neutrophils can become persistently activated, leading to ongoing tissue damage and inflammation. In these cases, neutrophils shift from being protective to potentially harmful, perpetuating a cycle of immune-mediated damage. The exact mechanisms behind this shift are complex and may involve a combination of cytokine dysregulation, abnormal interactions with the tissue microenvironment, and genetic factors. In autoimmune disorders, neutrophils can exacerbate disease progression by releasing pro-inflammatory mediators that drive tissue damage and exacerbate inflammation. Understanding these mechanisms is crucial for designing effective therapies to modulate neutrophil activity in chronic conditions.

Regulation of Neutrophil Function

Effective neutrophil responses require precise regulation to

avoid excessive tissue damage. Several signaling pathways control neutrophil activation, migration, and survival, including those mediated by cytokines, chemokines, and pathogen recognition receptors (e.g., Toll-like receptors). Importantly, neutrophils also play an active role in the resolution of inflammation, either by undergoing programmed cell death (apoptosis) or switching to proresolving phenotypes that help restore tissue homeostasis. A breakdown in these regulatory mechanisms can result in unresolved inflammation, tissue injury, and the development of chronic inflammatory diseases or autoimmunity.

Therapeutic Implications

Given their central role in both immune defense and disease, neutrophils are an attractive target for therapeutic interventions. Modulating neutrophil function could potentially treat a wide range of conditions, from bacterial infections and sepsis to autoimmune diseases and chronic inflammation. Strategies that aim to limit neutrophil infiltration into inflamed tissues, inhibit excessive NET formation, or promote the resolution of inflammation without impairing neutrophil function could have significant clinical benefits. However, therapeutic targeting of neutrophils presents a challenge, as it requires selectively modulating their actions to avoid compromising their essential roles in pathogen defense.

CONCLUSION

Neutrophils are pivotal components of the body's defense machinery, essential for the rapid detection and elimination of pathogens during infection. Their diverse functions, from phagocytosis and degranulation to the formation of neutrophil extracellular traps (NETs), illustrate their versatility in responding to microbial threats. Beyond their direct antimicrobial actions, neutrophils also play a critical role in shaping the inflammatory environment and guiding the resolution of immune responses. However, while these cells are indispensable for host protection, their dysregulated activity can lead to tissue damage, chronic inflammation, and autoimmune disorders. The delicate balance between their protective and potentially harmful actions underscores the complexity of neutrophil biology.

Emerging insights into the molecular and cellular mechanisms that govern neutrophil function offer promising

avenues for therapeutic intervention. By better understanding how neutrophils contribute to both immune defense and pathology, we can identify strategies to modulate their responses-either enhancing their protective capabilities in infection or dampening their harmful effects in chronic inflammation and autoimmune diseases. Ultimately, continued research into neutrophil biology holds the potential to revolutionize the treatment of a wide range of immune-related conditions, leading to more effective, targeted therapies for patients suffering from infections, autoimmune disorders, and inflammatory diseases.

REFERENCES

- Aarts CEM, Hiemstra IH, Tool ATJ, Van Den Berg TK, Mul E, Van Bruggen R, et al. Neutrophils as Suppressors of T Cell Proliferation: Does Age Matter? Frontiers in immunology 2019; 10: 2144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aarts CEM, Hiemstra IH, Tool ATJ, Van Den Berg TK, Mul E, Van Bruggen R, et al. Neutrophils as Suppressors of T Cell Proliferation: Does Age Matter? Frontiers in immunology 2019; 10: 2144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shaul ME, Fridlender ZG. Tumour-associated neutrophils in patients with cancer. Nature reviews Clinical oncology 2019.
 [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest

- 2013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5. Singel KL, Segal BH. Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal. Immunol Rev 2016; 273(1): 329-43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6. Treffers LW, Zhao XW, van der Heijden J, Nagelkerke SQ, van Rees DJ, Gonzalez P, et al. Genetic variation of human neutrophil Fcgamma receptors and SIRPalpha in antibodydependent cellular cytotoxicity towards cancer cells. Eur J Immunol 2018; 48(2): 344-54. [DOI] [PubMed] [Google Scholar]
- Bergin DA, Hurley K, Mehta A, Cox S, Ryan D, O'Neill SJ, et al. Airway inflammatory markers in individuals with cystic fibrosis and non-cystic fibrosis bronchiectasis. J Inflamm Res 2013; 6: 1-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8. Dworski R, Simon HU, Hoskins A, Yousefi S. Eosinophil and neutrophil extracellular DNA traps in human allergic asthmatic airways. J Allergy ClinImmunol 2011; 127(5): 1260-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9. Sur S, Crotty TB, Kephart GM, Hyma BA, Colby TV, Reed CE, et al. Sudden-onset fatal asthma. A distinct entity with few eosinophils and relatively more neutrophils in the airway submucosa? Am Rev Respir Dis 1993; 148(3): 713-9. [DOI] [PubMed] [Google Scholar]
- 10. Smith CK, Vivekanandan-Giri A, Tang C, Knight JS, Mathew A, Padilla RL, et al. Neutrophil extracellular trap-derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol 2014; 66(9): 2532-44. [DOI] [PMC free article] [PubMed] [Google Scholar]