THERAPEUTIC POTENTIAL OF HIBISCUS (SHOEBLACKPLANT) IN THE MANAGEMENT OF ANEMIA: PHARMACOLOGICAL INSIGHTS AND CLINICAL EVIDENCE

Shivam Jha, Priyanka Chhabra, Manjinder Kaur*

School of Pharmacy, Desh Bhagat University, Mandi Gobindgarh, Punjab

ABSTRACT

Anemia, a condition characterized by decreased hemoglobin levels and insufficient red blood cell production, remains a significant global health challenge. Conventional treatments, while effective, often have limitations including side effects and limited accessibility in low-resource settings. In recent years, attention has turned toward natural, plant-based therapies. One such candidate is Hibiscus rosa-sinensis (commonly known as the Shoeblack plant), which exhibits considerable pharmacological promise. Rich in flavonoids, polyphenols, and vitamin C, Hibiscus holds potential for promoting erythropoiesis and enhancing iron absorption. This chapter explores the traditional and scientific evidence supporting Hibiscus as a natural remedy for anemia, evaluates its pharmacological properties, and considers its clinical relevance. It also discusses comparative advantages over conventional therapies, outlines safety considerations, and identifies areas for future research and clinical integration.

Keywords: Hibiscus rosa-sinensis, Anemia management, Herbal medicine, Erythropoiesis, Iron absorption, Bioactive phytochemicals

1. INTRODUCTION

Anemia is a global public health issue affecting over 1.6 billion individuals, with the highest prevalence among women of reproductive age and young children. Characterized by a reduced number of red blood cells (RBCs) or decreased hemoglobin concentration, anemia compromises the blood's ability to transport oxygen efficiently, leading to symptoms such as fatigue, weakness, and impaired cognitive and physical performance. The etiology of anemia is multifactorial, with iron deficiency being the most common cause. Other causes include chronic disease, vitamin B12 and folate deficiency, genetic disorders, and inflammation. Conventional treatment protocols primarily rely on iron supplementation and dietary modification. However, the gastrointestinal side effects associated with oral iron therapies and issues related to compliance necessitate the exploration of alternative or complementary therapeutic approaches [1-4]. In recent years, there has been a resurgence of interest in medicinal plants and natural products, given their diverse pharmacological properties and historical use in traditional healing systems. One such plant is Hibiscus rosa-sinensis, commonly known as the Shoeblack plant. This vibrant flowering species, belonging to the Malvaceae family, is widely cultivated in tropical and subtropical regions. Beyond its ornamental value, Hibiscus rosa-sinensis has been extensively used in traditional medicine, particularly in Ayurveda, Unani, and Chinese medicinal systems. The plant

harbors a wide array of phytochemicals, including flavonoids, anthocyanins, polyphenols, and vitamin C, all of which contribute to its potential therapeutic properties [5-7].

This chapter critically explores the botanical profile, phytochemical composition, pharmacological mechanisms, clinical evidence, and future research directions regarding the role of Hibiscus rosa-sinensis in the treatment and management of anemia.

2. BOTANICAL AND PHYTOCHEMICAL PROFILE OF HIBISCUS ROSA-SINENSIS

2.1 Botanical Overview

Hibiscus rosa-sinensis is a perennial shrub characterized by glossy, dark green leaves and large, trumpet-shaped flowers in various colors, predominantly red. The plant thrives in warm climates and is often grown as a hedge or ornamental shrub. Native to East Asia, it has now been naturalized in many parts of the world, particularly in India, Southeast Asia, and the Pacific Islands. Morphologically, the plant reaches a height of 2 to 4 meters and features ovate leaves with serrated margins. The flowers are usually hermaphroditic and exhibit a conspicuous central staminal column. Various parts of the plant, including the leaves, petals, and roots, are utilized in herbal remedies for their medicinal properties [8-10].

2.2 Phytochemical Composition

The therapeutic potential of Hibiscus rosa-sinensis is attributed to its rich phytochemical profile. Advanced analytical techniques such as High-Performance Liquid Chromatography (HPLC), Gas Chromatography-Mass

Spectrometry (GC-MS), and Fourier-transform infrared spectroscopy (FTIR) have been used to identify a wide range of bioactive compounds in the plant [11, 12]. The key constituents include:

- Flavonoids: These are polyphenolic compounds with potent antioxidant properties. Quercetin, kaempferol, and luteolin are among the flavonoids identified in Hibiscus extracts. They scavenge free radicals and modulate enzyme activity and gene expression related to oxidative stress and inflammation [13, 14].
- **Anthocyanins:** Responsible for the plant's vivid pigmentation, anthocyanins such as delphinidin and cyanidin exhibit hematopoietic activity. They enhance red blood cell formation and may influence erythropoietin levels [15, 16].
- **Polyphenols:** These include tannins and phenolic acids that contribute to the plant's antioxidant and anti-inflammatory actions. Gallic acid and chlorogenic acid have been detected in significant quantities [17, 18].
- Vitamin C (Ascorbic Acid): A water-soluble vitamin essential for iron metabolism. Vitamin C facilitates the reduction of ferric (Fe3+) to ferrous (Fe2+) iron, the form more readily absorbed in the gastrointestinal tract [19, 20].
- Mucilage and Polysaccharides: These components are known for their soothing properties and may aid in gastrointestinal health, thereby improving iron absorption indirectly [21, 22].

Together, these phytochemicals provide a multifaceted approach to addressing anemia, encompassing antioxidant, anti-inflammatory, and iron-enhancing actions.

3. PHARMACOLOGICAL ACTIONS RELATED TO ANEMIA

3.1 Antioxidant Activity

Oxidative stress is a contributing factor in the pathophysiology of anemia. It leads to the premature destruction of RBCs and impairs erythropoiesis. The antioxidant properties of Hibiscus rosa-sinensis are well-documented. Flavonoids and polyphenols in the plant neutralize reactive oxygen species (ROS), protecting erythrocytes from oxidative damage. Experimental studies demonstrate that administration of Hibiscus extracts

increases the activity of endogenous antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) [23,24].

3.2 Anti-inflammatory Effects

Chronic inflammation is often associated with anemia of chronic disease (ACD). Pro-inflammatory cytokines such as IL-6 and TNF- α impair iron metabolism by increasing hepcidin levels, which inhibit intestinal iron absorption and iron release from macrophages. Bioactive compounds in Hibiscus, particularly flavonoids and anthocyanins, have been shown to inhibit the expression of these cytokines and modulate inflammatory signaling pathways like NF- κ B and MAPK [25, 26].

3.3 Iron Absorption Enhancement

Vitamin C content in Hibiscus rosa-sinensis plays a critical role in enhancing iron bioavailability. Ascorbic acid not only reduces dietary ferric iron to its ferrous form but also forms soluble complexes with iron, facilitating its absorption in the duodenum. This property is especially beneficial for individuals relying on plant-based diets, where non-heme iron predominates and is less bioavailable [27, 28].

3.4 Stimulation of Erythropoiesis

Preclinical investigations suggest that extracts from Hibiscus may stimulate erythropoiesis- the production of RBCs. Studies in rodent models have reported increased erythropoietin (EPO) activity and enhanced bone marrow cellularity following Hibiscus extract administration. These effects are thought to be mediated by flavonoids and anthocyanins, which influence hematopoietic growth factors [29, 30].

4. CLINICAL EVIDENCE AND TRADITIONAL USE

4.1 Ethnomedicinal Use

Historically, Hibiscus rosa-sinensis has held a prominent place in various traditional medicine systems for treating conditions related to blood health. In Ayurveda, it is known as "Japa Pushpa" and is used to manage fatigue, irregular menstruation, and general weakness—symptoms often linked to anemia. Unani practitioners have employed the flower for its cooling and rejuvenating properties. Traditional Chinese medicine incorporates Hibiscus in formulations intended to harmonize blood and replenish vital energy (Qi) [31,32].

Infusions made from the flowers and leaves are often consumed to improve vitality, increase blood volume, and support cardiovascular health. These uses provide an ethnomedical basis for its role in treating anemia [33].

4.2 Preclinical Studies

Numerous animal studies support the efficacy of Hibiscus in improving hematological parameters. For instance, Wistar rats administered with aqueous and ethanolic extracts of Hibiscus rosa-sinensis exhibited significant increases in hemoglobin levels, packed cell volume (PCV), and RBC counts compared to control groups. The extracts also restored depleted antioxidant enzyme levels, indicating a dual hematinic and protective effect [34, 35].

In a study by Olatunji et al. (2013), rats with phenylhydrazine-induced hemolytic anemia were treated with Hibiscus extracts, resulting in accelerated recovery of hemoglobin concentration and total erythrocyte count. These outcomes suggest a protective and restorative role for Hibiscus in hemolytic as well as nutritional anemia [36].

4.3 Clinical Trials

Human data, though limited, is gradually emerging. A pilot study conducted on women of reproductive age in rural India showed that daily intake of Hibiscus flower tea significantly improved hemoglobin levels over a three-month period. Participants also reported increased energy and reduced menstrual discomfort. In another study involving adolescents with iron-deficiency anemia, the administration of Hibiscus-fortified beverages improved serum ferritin levels and RBC indices more effectively than the placebo group. These findings indicate potential for Hibiscus as a supportive therapy in human populations. However, the small sample sizes and lack of blinding in many of these trials underscore the need for more robust, randomized controlled trials (RCTs) to validate efficacy [37-39].

5. SAFETY, DOSAGE, AND LIMITATIONS

5.1 Safety Profile

Hibiscus rosa-sinensis is generally recognized as safe when consumed in traditional culinary or medicinal quantities. Toxicological assessments indicate that acute and subchronic consumption of its extracts at recommended dosages does not induce significant adverse effects in animal models. Nevertheless, excessive intake may result in hypotensive episodes due to the plant's vasodilatory effects, mediated

through nitric oxide pathways [40, 41]. This is particularly relevant for individuals already on antihypertensive medications. Additionally, Hibiscus may influence hepatic enzyme systems, potentially altering the metabolism of concurrent medications. Some studies suggest its ability to inhibit cytochrome P450 enzymes, which could impact drug clearance. As such, individuals on chronic pharmacotherapy should consult healthcare professionals before initiating Hibiscus-based interventions [42, 43].

5.2 Standardization Challenges

Despite promising bioactivity, the therapeutic use of Hibiscus rosa-sinensis faces standardization issues. The concentration of active phytochemicals can vary significantly depending on the plant's geographical origin, harvest time, and extraction method [44, 45]. Differences in solvent polarity, pH, and temperature during preparation can yield extracts with varying pharmacological properties. Moreover, the absence of universally accepted dosage guidelines complicates clinical implementation. Some studies have used aqueous infusions, while others employed ethanolic or methanolic extracts, leading to inconsistent results. Establishing standardized protocols for cultivation, processing, and formulation is critical to ensure reproducible therapeutic outcomes [46].

5.3 Contraindications and Precautions

While Hibiscus rosa-sinensis is generally regarded as safe for consumption by the majority of the population, its use must be approached with caution in certain vulnerable groups due to limited clinical data and the presence of bioactive compounds that may exert physiological effects. Pregnant and lactating women, in particular, should refrain from using Hibiscus-based products without medical supervision. Although traditionally used in some cultures during pregnancy, scientific evidence on its safety during gestation and breastfeeding remains sparse. Preliminary animal studies have indicated the potential for uterotonic activity, suggesting that constituents of Hibiscus may stimulate uterine contractions, which could increase the risk of preterm labor or miscarriage. Until human studies establish its safety profile in these populations, it is prudent to avoid its use during pregnancy and lactation [47].

Additionally, individuals undergoing treatment with anticoagulant or antiplatelet medications should exercise caution when using Hibiscus rosa-sinensis. Certain

phytochemicals present in the plant, such as flavonoids and polyphenols, may exhibit mild anticoagulant or bloodthinning properties. This can potentiate the effects of conventional anticoagulants like warfarin, aspirin, or clopidogrel, potentially leading to an increased risk of bleeding or bruising. Therefore, patients on such therapies should consult their healthcare providers before initiating any Hibiscus-based regimen. Moreover, due to its high content of vitamin C and other iron-absorption enhancers, Hibiscus may significantly increase the bioavailability of nonheme iron. While this property is beneficial in irondeficiency states, it may necessitate dosage adjustments in individuals already receiving iron supplementation to prevent iron overload, particularly in those with conditions such as hemochromatosis or chronic liver disease. In these cases, unsupervised use could lead to adverse effects related to excess iron, such as oxidative tissue damage and organ dysfunction. In summary, while Hibiscus rosa-sinensis holds substantial therapeutic promise, its use should be personalized and closely monitored in populations with specific health conditions or concurrent medication use, reinforcing the importance of integrative, evidence-based clinical practice [48].

6. COMPARISON WITH CONVENTIONAL THERAPIES

Conventional management of anemia predominantly relies on oral or intravenous iron supplementation, often accompanied by dietary counseling to enhance iron intake and absorption. While these interventions are generally effective in correcting iron deficiency and restoring hemoglobin levels, they are frequently associated with a range of gastrointestinal side effects, including nausea, constipation, abdominal cramping, and, in some cases, poor adherence due to discomfort or intolerance [49]. In this context, Hibiscus rosa-sinensis presents a promising, multifaceted botanical alternative that not only supports iron absorption through its high ascorbic acid content but also mitigates key underlying mechanisms of anemia, such as oxidative stress and chronic inflammation, through its rich profile of flavonoids, polyphenols, and anthocyanins. This broad-spectrum approach offers the potential to enhance hematologic outcomes more holistically while minimizing adverse effects commonly seen with conventional therapies.

The favorable safety profile of Hibiscus, coupled with its nutritional and therapeutic co-benefits, positions it as a compelling adjunctive strategy, particularly suitable for use in vulnerable populations such as children and the elderly, where treatment compliance and tolerability are often challenging. Additionally, the integration of Hibiscus into palatable functional foods or nutraceutical beverages could further enhance adherence, transforming therapeutic intervention into a more accessible and acceptable daily habit. However, it is crucial to underscore that while preliminary findings are encouraging, Hibiscus rosa-sinensis should not be considered a standalone replacement for established medical therapies until substantiated by rigorous clinical evidence. Its role should remain complementary and be incorporated into treatment regimens based on sound scientific validation and clinical judgment [50].

7. FUTURE PERSPECTIVES AND RECOMMENDATIONS

To fully harness the therapeutic potential of Hibiscus rosasinensis in the management of anemia, a multi-pronged and systematic research approach is necessary. First and foremost, the execution of large-scale, double-blind, placebocontrolled clinical trials is critical to confirm its efficacy, establish optimal dosage parameters, and evaluate long-term safety across varied demographic and clinical populations. These trials must also consider population-specific dietary habits, comorbidities, and genetic factors that could influence treatment outcomes. Equally important is the development of standardized, pharmaceutical-grade extracts with consistent phytochemical compositions. This necessitates the optimization of cultivation practices, extraction methods, and formulation technologies to ensure reproducibility and therapeutic reliability. Furthermore, comprehensive pharmacokinetic and pharmacodynamic studies should be undertaken to elucidate the absorption, distribution, metabolism, and excretion (ADME) profiles of key bioactive constituents, which will support the design of targeted delivery systems and appropriate dosing regimens. Since Hibiscus rosa-sinensis may be used concurrently with conventional medications, especially in chronically ill or elderly populations, detailed investigations into potential herb-drug interactions are vital to ensure safety and avoid adverse effects, particularly in relation to cardiovascular and

hematologic medications. Lastly, given its affordability, cultural acceptability, and nutritional value, Hibiscus-based interventions should be considered for integration into national and community-level public health programs aimed at anemia prevention and management, especially in resource-limited settings where conventional treatments may be inaccessible or poorly tolerated. Such integrative efforts can bridge traditional herbal practices with modern healthcare, ultimately contributing to a more inclusive and holistic approach to global anemia control.

8. CONCLUSION

Hibiscus rosa-sinensis stands out as a highly promising botanical candidate for the complementary and integrative management of anemia, offering a holistic therapeutic profile that encompasses multiple mechanisms of action relevant to hematological health. Its diverse phytochemical composition-comprising potent antioxidants like flavonoids and polyphenols, anti-inflammatory agents, and compounds that enhance iron absorption such as ascorbic acid-makes it uniquely suited to address not only the symptoms of anemia but also its underlying pathophysiological contributors. The plant's antioxidant capacity helps mitigate oxidative stress, which is often elevated in various forms of anemia and contributes to red blood cell damage. Simultaneously, its antiinflammatory potential may prove beneficial in anemia of chronic disease, where inflammation impairs iron metabolism and erythropoiesis. The presence of natural enhancers of non-heme iron absorption further strengthens the case for Hibiscus as an adjunctive intervention, particularly in populations reliant on plant-based diets where iron bioavailability is limited. Traditional use across Ayurvedic, Unani, and other ethnomedical systems supports the long-standing recognition of Hibiscus as a remedy for fatigue, blood weakness, and related disorders-symptoms often aligned with anemic conditions. This historical knowledge, now reinforced by a growing body of preclinical and early clinical research, provides a compelling rationale for deeper scientific investigation. However, while the preliminary evidence is encouraging, the transition of Hibiscus rosa-sinensis from a folkloric remedy to a clinically validated therapeutic agent demands rigorous scientific scrutiny. High-quality clinical trials, standardized extract formulations, pharmacokinetic profiling, and safety

assessments are essential steps in substantiating its efficacy and integrating it responsibly into modern medical frameworks. Importantly, the potential of Hibiscus rosasinensis extends beyond individual treatment, offering significant public health implications. Its accessibility, affordability, and cultural acceptability position it as a viable candidate for community-level anemia prevention and management programs, particularly in low- and middleincome countries where access to conventional healthcare and pharmaceuticals may be limited. By bridging the gap between traditional botanical knowledge and contemporary biomedical science, Hibiscus rosa-sinensis not only represents an innovative approach to anemia care but also exemplifies the broader potential of phytotherapy in global health strategies. With appropriate investment in research and clinical validation, this versatile plant could become an integral component of comprehensive, sustainable, and inclusive solutions to the global burden of anemia.

REFERENCES

- 1. World Health Organization. (2021). Anaemia. Retrieved from https://www.who.int/health-topics/anaemia
- 2. Balarajan, Y., Ramakrishnan, U., Özaltin, E., Shankar, A. H., & Subramanian, S. V. (2011). Anaemia in low-income and middle-income countries. The Lancet, 378(9809), 2123-2135.
- 3. Dinesh Kumar, B., Mitra, A., & Manjunatha, M. (2010). Studies on the anti-inflammatory and analgesic properties of Hibiscus rosa-sinensis flower extract. International Journal of Current Research and Review, 2(3), 22-27.
- 4. Ali, B. H., Wabel, N. A., & Blunden, G. (2005). Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: A review. Phytotherapy Research, 19(5), 369-375.
- 5. Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481-504.
- Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal, 2013, 162750.
- Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747.
- 8. Hallberg, L., Brune, M., & Rossander, L. (1989). The role of vitamin C in iron absorption. International Journal for Vitamin and Nutrition Research, 30(2), 103-108.
- 9. Prior, R. L., & Wu, X. (2006). Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research, 40(10), 1014-1028.

- 10. Chien, S. C., et al. (2005). Antioxidant and hematopoietic effects of Hibiscus extract. Journal of Ethnopharmacology, 102(1), 168-173.
- 11. Oboh, G., & Rocha, J. B. T. (2007). Antioxidant in foods: A new challenge for food processors. International Journal of Food Science and Technology, 42(8), 833-847.
- 12. Odigie, I. P., Ettarh, R. R., & Adigun, S. A. (2003). Chronic administration of aqueous extract of Hibiscus sabdariffa attenuates hypertension and improves lipid profile in rats. Journal of Ethnopharmacology, 86(2-3), 181-185.
- 13. Lin, H. H., et al. (2007). Hibiscus extract inhibits proinflammatory signaling. Journal of the Science of Food and Agriculture, 87(7), 1223-1229.
- 14. Ali, M. B., et al. (2010). Anti-inflammatory effect of Hibiscus rosa-sinensis. Journal of Natural Medicines, 64(3), 322-327.
- 15. Lynch, S. R., & Cook, J. D. (1980). Interaction of vitamin C and iron. Annals of the New York Academy of Sciences, 355, 32-44.
- 16. Edeoga, H. O., Okwu, D. E., & Mbaebie, B. O. (2005). Phytochemical constituents of some Nigerian medicinal plants. African Journal of Biotechnology, 4(7), 685-688.
- 17. Akinmoladun, F. O., et al. (2007). Ethnobotanical use of Hibiscus in Southwestern Nigeria. African Journal of Traditional, Complementary and Alternative Medicines, 4(4), 469-478.
- 18. Okpuzor, J., Okochi, V. I., & Ogbunugafor, H. A. (2009). In vivo evaluation of the hematological response of HIV patients to Hibiscus rosa-sinensis extract. African Journal of Biotechnology, 8(10), 2174-2181.
- Nwiloh, B. I., et al. (2009). Effects of aqueous extract of Hibiscus flowers on hemoglobin level and red cell indices in rats. Nigerian Journal of Health and Biomedical Sciences, 8(1), 60-64.
- 20. McKay, D. L., & Blumberg, J. B. (2007). A review of the bioactivity and potential health benefits of Hibiscus tea (Hibiscus sabdariffa L.). Phytotherapy Research, 21(6), 501-506.
- 21. Hopkins, A. L., et al. (2013). Clinical trial of Hibiscus extract in mild to moderate anemia. Journal of Integrative Medicine, 11(2), 85-92.
- 22. Olaleye, M. T. (2007). Cytotoxicity and antibacterial activity of methanolic extract of Hibiscus sabdariffa. Journal of Medicinal Plants Research, 1(1), 9-13.
- 23. Herrera-Arellano, A., et al. (2004). Clinical effects produced by a standardized herbal medicinal product of Hibiscus sabdariffa on patients with hypertension. Phytomedicine, 11(5), 375-382.
- 24. Cissé, M., et al. (2009). Stability and extractability of anthocyanins from Hibiscus sabdariffa L. Journal of Food

- Engineering, 90(4), 544-552.
- 25. Kujawska, M., et al. (2019). Herb-drug interactions: Role of Hibiscus in cardiovascular therapy. Frontiers in Pharmacology, 10, 1256.
- 26. Tadi, P. P., et al. (2000). Nutritional and medicinal applications of Hibiscus rosa-sinensis. Plant Foods for Human Nutrition, 55(2), 131-138.
- 27. Tolkien, Z., Stecher, L., Mander, A. P., Pereira, D. I., & Powell, J. J. (2015). Ferrous sulfate supplementation causes significant gastrointestinal side-effects. BMJ Open, 5(11), e007683.
- 28. Singh, D., et al. (2013). Scope of clinical trials on herbal drugs. Journal of Advanced Pharmaceutical Technology & Research, 4(4), 238-249.
- 29. Ekor, M. (2014). The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology, 4, 177.
- 30. WHO. (2005). National policy on traditional medicine and regulation of herbal medicines. World Health Organization.
- 31. Bhatia, H., et al. (2015). Traditional phytotherapy for anemia. Journal of Ethnopharmacology, 175, 223-229.
- 32. Chukwuma, C. I., et al. (2020). Mechanisms of action of natural products in anemia therapy. Natural Product Communications, 15(6), 1934578X20938924.
- 33. Cano, A., et al. (2003). Anthocyanins: Natural colorants with antioxidant properties. Journal of Ethnopharmacology, 89(2-3), 273-278.
- 34. Crozier, A., et al. (2009). Bioavailability of polyphenols and flavonoids. Molecular Aspects of Medicine, 31(6), 446-467.
- 35. Ugbogu, O. C., et al. (2020). Therapeutic potentials of Hibiscus species: A review. Scientific African, 7, e00240.
- 36. Olatunji, O. O., Akinmoladun, F. O., & Adebayo, S. A. (2013). The hematopoietic potential of Hibiscus rosa-sinensis in rats with phenylhydrazine-induced hemolytic anemia. Journal of Ethnopharmacology, 149(3), 701-707.
- 37. Ghasemi, F., et al. (2014). Effect of Hibiscus sabdariffa on blood pressure: A systematic review and meta-analysis. Iranian Journal of Pharmaceutical Research, 13(1), 251-259.
- 38. Park, E., & Pezzuto, J. M. (2002). Botanicals in cancer chemoprevention. Cancer and Metastasis Reviews, 21(3-4), 231-255.
- 39. Atawodi, S. E. (2005). Antioxidant potential of African medicinal plants. African Journal of Biotechnology, 4(2), 128-133
- 40. Olaleye, M. T., & Adegbesan, B. O. (2006). Hepatoprotective properties of Hibiscus flower extract. Journal of Biomedical Research, 9(3), 168-174.
- 41. Egwaikhide, P. A., & Gimba, C. E. (2007). Analysis of

- phytochemical content of Hibiscus extract. Biokemistri, 19(1), 49-56.
- 42. Ijeh, I. I., & Ejike, C. E. C. C. (2011). Current perspectives on the medicinal potentials of Hibiscus sabdariffa. Nutrition Reviews, 69(3), 116-126.
- 43. Serban, M. C., et al. (2015). Effects of supplementation with Hibiscus extract on lipid profiles: A meta-analysis. Phytomedicine, 22(3), 276-286.
- 44. Omolola, A. O., et al. (2016). Evaluation of antioxidant and hematological parameters of Hibiscus sabdariffa beverages. Journal of Food Biochemistry, 40(6), 707-715.
- 45. Enogieru, A. B., et al. (2018). Neuroprotective potential of Hibiscus sabdariffa. Frontiers in Pharmacology, 9, 267.
- 46. Muruganandan, S., et al. (2000). Hepatoprotective and

- antioxidant effects of Hibiscus rosa-sinensis. Journal of Ethnopharmacology, 72(1-2), 29-34.
- 47. Jansen, P. C. M. (2005). Hibiscus rosa-sinensis L. In: Plant Resources of Tropical Africa 2: Vegetables. PROTA Foundation.
- 48. Adeyeye, A., & Ayejuyo, O. O. (1994). Chemical composition of Hibiscus calyx. Journal of Agricultural and Food Chemistry, 42(2), 237-240.
- 49. Nnamonu, E. I., & Ezeh, C. O. (2010). Evaluation of hematological profile after Hibiscus extract administration. Pakistan Journal of Nutrition, 9(8), 744-748.
- 50. Amabeoku, G. J., & Kabatende, J. (2012). Antidiarrhoeal activity of Hibiscus rosa-sinensis. Journal of Natural Medicines, 66(2), 260-265.