CONNECTIVE TISSUE GRAFTS: AN OVERVIEW

Arun Brar, Birsukhman Kaur Braur

Department of Periodontology, Desh Bhagat Dental College and Hospital, Mandi Gobindgarh, Punjab, India

ABSTRACT

Connective tissue grafts (CTGs) have been reportedly used as a barrier for protecting and stabilizing wounds at furcation sites during the healing period and to support bone regeneration for closing mandibular Class II furcation defects in humans. **Keywords:** Graft, periodontal therapy, regeneration

INTRODUCTION

Various histological studies of healing onsubepithelial CTG to the root surface revealed areas of regeneration, withnew bone, cementum, and connective tissue attachment coronal to theoriginal gingival margin. Bouchard et al compared CTG as a barrier with expandedpolytetrafluoroethylene (ePTFE) membrane for closing 24 mandibular buccal Class II furcation lesions, and reported comparable potential forboth types of graft in supporting bone regeneration in mandibular Class II furcation lesions. Recently, Belal et al reported the results of a study that evaluated the response of CTG as a barrier therapy for 10 Class IImandibular furcation defects, and 2.83 mm of V-RAL gain was observed. A gain in V-RAL using CTG as a barrier (as observed in the presentstudy) also supports the favourable clinical and histologic results ofBruno and Bowers, who used CTG in their case report study. The goodresults CTG could be explained by the fact that, in addition to providing aspace for regenerating cells, CTG as a barrier may have better supported and protected the wound of the furcation site during the healingperiod(similar to or perhaps better than GTR membranes). Histologic studies on CTGs have shown that the attachment of the graft to the root surface appears to be mediated by a combination of epithelialdown growth and connective tissue attachment with minimal sign of newcementum-like tissue formation in the apical portion of the recessionareas coronal to the base of the instrumented root surface. Coronal growthof alveolar bone has been observed to a minimum extent and does notparallel the height of newly formed cementum- like tissue. The use of CTG appears to improve the long-term stability of the coronally advanced flap; and the use of CTG in conjunction with coronally advanced flap, double pedicle graft, or the supraperiostealtunnel technique appear to yield higher root coverage than the use ofbioabsorbable membranes. Therefore, it can be argued that the use of CTG should provide better and more stable long-term clinical results in the treatment of Class II furcation defects as well. 3,4

OTHER BIORESORBABLE MEMBRANES

Dura mater, consisting of an irregular network of collagen fibers, isobtained from cadavers, processed to eliminate antigenic and pyrogenicactivity, then lyophilized and sterilized. Use of cadaveric dura mater mayrepresent a risk of acquiring Creutzfeldt–Jakob disease (Tatakis et al.1999). Acellular dermal matrix (ADM), material obtained from human skin, has been used as a substitute for palatal connective tissue to increase the width of keratinized tissue around teeth or implants. ⁵

One of the oldest biomaterials used for scaffolds is the fetal membrane. Inparticular, amniotic membrane (AM) has gained importance because ofits ability to reduce scarring and inflammation, enhance wound healing, and serve as a scaffold for cell proliferation and differentiation as a resultof its antimicrobial properties. AM was used as a barrier membranebetween the gingival epithelium and hard tissue to promote theperiodontal ligament cells to form progenitor cells that can regeneratenew tissues in the treatment of human periodontal grade II buccalfurcation defects (Kothiwale et al. 2009). AM was also effective inhelping cicatrization and wound healing after dental implant surgery. AMsupports the growth of epithelium thus facilitating migration andreinforcing adhesion. It decreases pain (Velez et al. 2010).

SYNTHETIC ABSORBABLE MEMBRANES

Synthetic absorbable devices for medical use are usually manufactured from organic aliphatic thermoplastic polymers. The materials most commonly used are poly (\(\mathbb{D}\)-hydroxy acids), which includes poly (lacticacid), poly (glycolic acid), and poly (glycolide-lactide), also known as PGA/PLA membrane.

The PGA/PLA membrane is composed of a synthetic copolymer of glycolide and lactide. The polymeric components of the barrier are brokendown by hydrolysis and eliminated from the body through the Kreb's cycleas carbon dioxide and water. The degradation rate is dependent on

thepH, the presence of mechanical strain, enzymes and bacteria (infection). Italso varies depending on the composition; modification of poly (L-lactide)by crosslinking or addition of D-lactide or glycolide result in materials that have more rapid degradation, thus diminishing the poly (L-lactide)disadvantage of slow degradation.A double-layered absorbable device (GUIDOR matrix barrier) made ofpoly (lactic acid) (containing both L-and D-lactic enantiomers) and a citricacid ester (acetyl-tributylcitrate) was the first to gain FDA approval. The external layer of the barrier, designed to allow integration of the overlyinggingival flap, contains rectangular perforations. Between external and internal layers there are internal spacers, creating a space into which tissuecan grow. The GUIDOR device has received 4. clinical evaluation in avariety of periodontal defects. Hurzeler et al. compared the PGA/PLA placement to control defectstreated by flap debridement surgery alone in a monkey model. There was a tatistically significant histologic increase in the amount of defectresolution at the test sites as compared to controls.2 Lundgren et al. alsothrough his study showed that favourable results obtained with polylacticacid membrane was credited to the special double layer design whichpromoted the integration of the barrier with the surrounding tissues.5

Advantages:

- 1. Absorbable barriers do not require additional surgery for removal, which reduces patient discomfort, chair-side time and related cost, while eliminating potential surgery-related morbidity. ¹⁰³
- 2. By their inherent nature, absorbable barriers offer limited control overthe length of application. This is because the disintegration processstarts upon placement in the tissues, and the ability of each individual patient to degrade a particular biomaterial may vary significantly, particularly for materials requiring enzymatic degradation (such ascollagen).

Disadvantages:

Because of their biodegradability, absorbable devices elicit inevitableand necessary tissue reactions that may influence would healing. Ideally, these inflammatory reactions should not compromise the intended regenerative outcome. This probably requires that such reactions be of limited magnitude and tolerable nature and occur after the critical early healing. 6

REFERENCES

- 1. Bansal R, Patil S, Chaubey K, Thakur R, Goyel P. Clinical evaluation of hydroxyapatite and b-tricalcium phosphate composite graft in the treatment of intrabony defects: a clinicoradiographic study. J Ind Soc Peridontol 2014;18(5):610-617.
- Mattson JS, Gallagher SJ, Jabro MH. The use of twobioabsorbable barrier membranes in the treatment of interproximalintrabony periodontal defects. J Periodontol 1999;69:698-709.
- Thoma D.S., Cosyn J., Fickl S., Jensen S.S., Jung R.E., Raghoebar G.M., Rocchietta I., Roccuzzo M., Sanz M., Sanz-Sánchez I., et al. Soft tissue management at implants: Summary and consensus statements of group 2. The 6th EAO Consensus Conference 2021. Clin. Oral Implants Res. 2021;32:174-180.
- Poli P.P., Maridati P.C., Stoffella E., Beretta M., Maiorana C. Influence of Timing on the Horizontal Stability of Connective Tissue Grafts for Buccal Soft Tissue Augmentation at Single Implants: A Prospective Controlled Pilot Study. J. Oral Maxillofac. Surg. 2019;77:1170-1179.
- Rojo E., Stroppa G., Sanz-Martin I., Gonzalez-Martín O., Nart
 J. Soft tissue stability around dental implants after soft tissue
 grafting from the lateral palate or the tuberosity area-A
 randomized controlled clinical study.
- 6. Aldhohrah T., Qin G., Liang D., Song W., Ge L., Ahmed Mashrah M.I., Wang L. Does simultaneous soft tissue augmentation around immediate or delayed dental implant placement using sub-epithelial connective tissue graft provide better outcomes compared to other treatment options? A systematic review and meta-analysis. PLoS ONE. 2022;17:E0261513.