NICKEL-TITANIUM ALLOYS AS ORTHODONTIC APPLIANCES: A REVIEW

Shivani Kansal, Garima, Taranpreet Kaur

Desh Bhagat Dental College and Hospital, Mandi Gobindgarh, Punjab, India

ABSTRACT

Nickel-titanium (NiTi) alloys have become central in orthodontics, especially as archwires for initial alignment and levelling stages. Their unique properties—shape memory effect, superelasticity, relatively low modulus, and ability to deliver a relatively constant force over a long deflection—make them well suited to the demands of moving teeth with minimal trauma. However, there are also concerns: corrosion and ion release (especially nickel), hypersensitivity, changes in mechanical behaviour under different oral conditions, fatigue, and cost. This review synthesizes the literature on the material science, mechanical behaviour, biological interactions, clinical use, limitations, and emerging modifications of NiTi alloys in orthodontics

Keywords: Nickel-titanium alloys; shape memory effect; super-elasticity; corrosion resistance; orthodontic biomechanics

1.Introduction

Orthodontic treatment aims to move teeth in a controlled manner to correct malocclusions. Fixed appliances (brackets plus archwires) are the most common, and archwire materials play a crucial role in determining force levels, patient comfort, treatment efficiency, and side effects. Among archwire materials, NiTi alloys (often called Nitinol in earlier literature) have revolutionized early stages of treatment.

NiTi was developed in the 1960s by Buehler at the Naval Ordnance Laboratory (hence "NiTi-nol"). It combines ~50% nickel and ~50% titanium by atomic or weight proportions (varies among formulations)

The contributions of nickel and titanium, cold-working or heat treatments, and minor alloying or processing differences lead to a range of behaviour that is harnessed in orthodontic wires.

2. Metallurgy and Material Science

2.1 Composition and Phases

Base composition: Most NiTi wires used in orthodontics are near equiatomicNi:Ti (approximately 50:50) though exact percentages vary. Some proprietary heat-treatments include minor modifications (added elements or changed thermal processing) to yield desirable phase transformation temperatures or mechanical behaviour.

Crystal phases: The material can exist in martensitic, austenitic, and R-phase (intermediate) forms. The transformations between these phases (thermally or stress-induced) underlieshape memory and superelastic behaviour. Temperature and stress influence which phase dominates.

2.2 Shape Memory Effect and Superelasticity

Shape memory effect (SME): If the wire is deformed in martensitic form and then heated above a transformation temperature, it returns to its original (austenitic) shape. Some newer NiTi wires are tuned so that the oral temperature (\sim 37 \boxtimes °C) is sufficient to trigger or maintain this effect.

Superelasticity: The property by which a wire deformed in the austenitic phase will return to its original shape upon unloading, even without a thermal stimulus. Useful for delivering relatively constant force across a wide deflection range.

2.3 Influence of Processing: Heat Treatment, Cold Work, Surface Finish, Cold-work (drawing, bending) can stabilize certain phases and affect transformation temperatures, modulus, yieldstrength, and superelastic behaviour. Excessive cold work can suppress shape memory or shift transformation temperatures.

Heat treatment (including proprietary "thermo-mechanical treatments") can create variations like "heat-activated" NiTi wires, which are more pliable at room temperature but rigid at body temperature, or vice versa. These allow more comfortable insertion and predictable force delivery.

Surface finish matters: polishing, coatings, ion implantation, and other smart surface modifications can affect friction, corrosion resistance, ion release, smoothness, appearance.

3. Mechanical Properties Relevant to Orthodontics

3.1 Force-deflection Behaviour

One of the main advantages of NiTi wires is their ability to deliver long, relatively constant forces over a large deflection (i.e., when teeth are far from desired position). This helps avoid overloading, reducing pain and root resorption risk. Superelastic wires yield plateau-like loading/unloading

curves in force-deflection tests.

Heat-activated wires add another layer of control: insertion is easier (lower effective stiffness at ambient), activation as the wire warms, etc.

3.2 Modulus, Yield Strength, Fatigue

NiTi typically has lower elastic modulus compared to stainless steel (SS), which means more deflection for given force. But yield strength and plateau stress may be lower than SS, depending on alloy and treatment.

Fatigue life: repeated bending/unbending especially at stress concentration zones (bracket-wire contact, bending for curve in wire) can lead to fatigue. Surface defects, microstructure, and environment (corrosive media, pH, fluorides, etc.) affect fatigue.

3.3 Friction and Wear

Friction between archwire and bracket is a practical issue: high friction slows tooth movement, requires higher force, increases discomfort. Surface roughness, coatings, cross-section shape (round, rectangular), wire-bracket material pairing all matter. NiTi wires often have higher friction than polished SS wires, but surface treatments and coatings can reduce this disadvantage.

Wear (mechanical) plus corrosion (chemical) jointly termed tribocorrosion is a concern: surfaces degrade under oral function, sliding against brackets, chewing loads in presence of saliva, pH cycles, fluorides etc.

4. Corrosion, Ion Release, Biocompatibility, and Hypersensitivity

4.1 Electrochemical Corrosion in Oral Environments

Oral environment is variable: pH changes (due to food, bacterial activity), the presence of fluoride (mouthwash, toothpaste, gels), temperature fluctuations, mechanical loading. These can compromise passivation layers on NiTi, especially titanium oxide (TiO₂), and allow ion release.

Studies indicate that lower pH and higher fluoride concentrations accelerate corrosion or reduce the stability of the passive film.

4.2 Ion Release and Its Kinetics

Nickel and titanium ions are released, especially initially (first few days to weeks) after insertion. After initial burst, release tends to stabilize but continues at lower rates.

Studies measuring Ni concentration in saliva/urine show

increases after 3 months, sometimes 6 months of treatment. Typically, concentrations remain within accepted safety limits for systemic toxicity, but locally may cause hypersensitivity.

4.3 Allergic Sensitization / Hypersensitivity

Nickel is a well-known allergen. As Ni content of NiTi is high (\sim 50%), there is risk of nickel hypersensitivity reactions: mucosal irritation, gingival inflammation, lip swelling, burning sensations, sometimes more systemic reactions.

Studies (e.g. Zigante et al.) measure prevalence of sensitization in patients undergoing fixed appliances: in that study, about 4% had titanium sensitization, somewhat higher for nickel; self-reported symptoms correlated with age, sex etc.

4.4 Cytotoxicity, Cellular Effects

Ni ions in certain concentrations can have cytotoxic effects on fibroblasts, osteoblasts; influence cell proliferation. In vitro tests show that higher concentrations (especially in early exposure) may impair cell viability. However, clinical significance is less clear because in vivo dilution, salivary flow, tissue clearance, etc. mitigate effects.

5. Clinical Use, Advantages, and Limitations

5.1 Advantages in Clinical Orthodontics

Light, continuous force over large deflections, leading to more physiological tooth movement, less patient discomfort. Shape memory / temperature-sensitive wires: insertion easier, activation in mouth, better patient comfort.

Good resiliency and fatigue resistance (especially with improved processing).

Wide variety: round wires for alignment, rectangular for torque/finishing, heat-activated or superelastic, etc.

5.2 Limitations and Potential Disadvantages

Nickel release / allergy as above.

Corrosive degradation under extreme or unfavorable oral conditions.

Friction: higher than some steel wires, which may slow sliding tooth movement unless reduced by surface modification or using low-friction brackets.

Cost: NiTi wires, especially specialty heat-activated or superelastic ones, are more expensive than stainless steel.

Mechanical behaviour variability: processing differences, batch variability, environmental factors (temperature, humidity, pH) may change the transformation temperatures and thus the performance in mouth.

Fatigue failure / permanent deformation: with repeated stresses, bending around brackets or under chewing forces, wires can fail.

5.3 Clinical Studies

Trials and in vivo studies show that NiTi wires significantly reduce alignment times in early stages compared to non-NiTi wires. Heat-activated wires may reduce discomfort during wire change. However, long-term outcomes (final alignment, stability, root resorption) are often similar when finishing wires (stainless steel, etc.) are used. Some variability depending on protocols.

Ion release studies in clinical situations show measurable increases but within acceptable toxicological levels; local symptoms more likely than systemic toxicity.

6. Modifications, Variants and Emerging Materials

6.1 Heat-activated / Temperature-sensitive NiTi

Wires that remain relatively flexible at room temperature but become stiffer at body temperature. Useful for patient comfort and precise force timing. Multiple commercial wires now offer this.

6.2 Surface Coatings, Ion Implantation, Surface Treatments

Coatings (polymer, ceramic, diamond-like carbon, etc.), ion implantation, nitriding, or other modifications aimed to reduce ion release (especially nickel), reduce friction, improve aesthetics (colour coated wires), improve corrosion resistance.

For example, reusing NiTi wires after sterilization/heat treatment may reduce ion release.

6.3 Alloy Variants

Modified NiTi with additional elements or different thermal treatment to shift transformation temperatures (e.g., lower or higher), adjust plateau stress, improve fatigue life.

Some wires are "variable force delivery" – stiffer in some segments (e.g., posterior) and more flexible in others (anterior parts) of the same archwire.

6.4 Alternative Alloys for Patients with Nickel Allergy

Titanium-alloys with lower or no nickel content (e.g. β -titanium, titanium-molybdenum alloys) are options. However, they often do not have same superelasticity or shape

memory. Trade-offs are required.

7. Environmental and Oral Conditions Influencing Behaviour

Saliva composition, flow, pH, temperature fluctuations: acidic environment (low pH) increases corrosion; presence of fluoride (especially at high concentration) can degrade passive film.

Mechanical stresses: during chewing, sliding in brackets, bending, cyclic loading. Contact wear + corrosion \rightarrow tribocorrosion. These accelerating factors shorten lifespan or alter mechanical behaviour.

Oral hygiene, diet: acidic food/drink, frequent fluoride or bleaching agents, exposure to chlorides etc. can contribute.

Temperature: wires sensitive to temperature; shape memory &superelastic behaviour derive from transition temperatures which are near oral/ambient temps; variation in temperature can shift whether wire is in martensitic or austenitic state, thus altering stiffness.

8. Safety, Regulatory, and Ethical Considerations

Regulatory standards: Orthodontic wires are medical devices; they are subject to biocompatibility, corrosion, mechanical performance standards (both in-vitro and clinical). Proper testing is required (cytotoxicity, metal ion release, microbiological safety).

Ethical considerations: Patients should be informed about potential for nickel allergy, and when indicated, alternative wires offered. Informed consent should include possible adverse reactions (mucosal irritation, hypersensitivity).

Cost-benefit: Though more expensive, NiTi wires' advantages in early alignment, reduced appointments, possibly less discomfort may justify cost. But for some patients/cases, simpler or less costly wires may suffice.

9. Limitations and Gaps in Current Research

Heterogeneity in studies: Differences in alloy formulations, processing, testing protocols (in vitro vs in vivo; artificial saliva vs human saliva; pH; duration), make comparisons difficult.

Long-term clinical outcome data: Many studies focus on alignment phase, but less on long-term outcomes (relapse, root resorption, tooth mobility), especially for specialty NiTi wires.

Patient variability: Oral environment, diet, hygiene, salivary

pH, genetic predisposition to allergy etc. affect outcomes, but are understudied.

Mechanisms of ion release under dynamic, combined conditions: Most studies use static immersion; fewer combine mechanical wear, corrosion, temperature, etc. Tribocorrosion is still an emerging area.

Allergy prevalence, thresholds: Although nickel allergy is known, the dose at which symptoms are triggered in orthodontic use is still variable; also, titanium allergy less well characterized.

10. Future Directions

Further refinement of heat-activated, variable stiffness wires so that force delivery is more optimized throughout treatment stages.

Improved surface engineering: Coatings, nanoscale treatments, ion implantation, to reduce corrosion/ion release while retaining mechanical behaviour.

Development of nickel-free superelastic or shape memory wires to reduce allergy risk without sacrificing performance.

Better simulation of oral conditions in lab studies: including tribocorrosion, cyclic loading, fluctuating pH, presence of bacterial biofilms etc.

More long-term clinical trials comparing different types of NiTi wires (standard vs heat-activated vs variant alloy) in terms of efficiency, side effects, patient comfort, cost, and retention.

Personalized orthodontics: matching wire type to individual patient's susceptibility to nickel, their oral environment, treatment goals etc.

Sustainability / reuse: exploring sterilization/reuse or recycling of wires without compromising mechanical/biological properties.

11. Conclusion

Nickel-titanium alloys have earned a central place in modern orthodontics owing to their special properties—shape memory, superelasticity, capability to deliver continuous forces over large ranges, and relatively favorable resilience. These features improve treatment efficiency, particularly in the alignment and levelling phases, and reduce patient discomfort. However, challenges remain: biocompatibility (nickel ion release, allergy, cytotoxicity), environmental/durability issues (corrosion, wear, fatigue),

cost, and variability of performance under different oral conditions. Emerging technologies and alloy modifications are addressing these concerns, but more rigorous and standardized in vivo studies (especially over long durations) are needed to guide optimal clinical use.

Key References

Thompson, S. A. (2000). An overview of nickel-titanium alloys used in dentistry. International Endodontic Journal, 33(4), 297–310.

Fernandes, A. (2011). Understanding the shape-memory alloys used in orthodontics. International Scholarly Research Notices, 2011, Article ID 132408.

"Nickel titanium alloys as orthodontic archwires: A narrative review." Engineering Science & Technology, an International Journal, vol.⊠36, December 2022.

"A Critical Appraisal of the Use and Properties of Nickel-Titanium Dental Alloys." Materials, 14(24), 7859 (2021).

Bellini, H., Moyano, J., Gil, J., & Puigdollers, A. (2016). Comparison of the superelasticity of different nickel–titanium orthodontic archwires and the loss of their properties by heat treatment. Journal of Materials Science: Materials in Medicine, 27(10), 158.

Evolution, clinical applications, and prospects of nickel-titanium alloys for orthodontic purposes. Journal of the World Federation of Orthodontists. (2020).

"Efficiency, behaviour, and clinical properties of superelasticNiTi versus multistranded stainless steel wires: A prospective clinical trial." Angle Orthodontist, 82(5):915–921.

"Alignment efficiency of heat activated and superelastic nickel-titanium archwires in orthodontic patients over three months: A Single-center, randomized clinical trial." Journal of Orthodontic Science, 12:9 (2023).

"Properties of Superelastic Nickel–Titanium Wires after Clinical Use." Materials, 16(16), 5604 (2023).

"A Systematic review on aligning efficiency of superelasticNiTi: in comparison with conventional NiTi and multistranded stainless steel archwires." International Journal of Dental Research, 5(1), 39–45 (2017).

"Evaluation of the release of nickel and titanium under orthodontic treatment." PubMed / Various Journals. (2021) — examines ion release kinetics under clinical conditions.

"Mechanical properties and clinical performance of different brands of nickel titanium archwires following intraoral use." International Journal of Health Sciences (journal version) includes discussion of retrieved wires.